EXAMPLES OF SECTIONS 4.6, 4.8

In the problems below, let A be the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -4 & -3 & -7 \\
2 & -1 & 1 & 7 \\
1 & 2 & 3 & 11
\end{array}\right]
$$

Question 1. Give the column and row spaces of A in terms of a basis.

Question 2. Find a basis for the solution space to $A x=0$.

Question 3. What is the dimension of Null space of A ?

SOLUTIONS.

1. Applying Gauss-Jordan elimination we find

$$
\operatorname{rref}(A)=\left[\begin{array}{llll}
1 & 0 & 1 & 5 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first two columns are pivot columns, i.e., they contain a leading one. Therefore the first two columns of A are linearly independent, and

$$
\operatorname{colspace}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
-4 \\
-1 \\
2
\end{array}\right]\right\} .
$$

The non-zero rows of $\operatorname{rref}(A)$ are the first and the second, therefore

$$
\operatorname{rowspace}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]\right\}
$$

Remark. It is important to remember that, after finding $\operatorname{rref}(A)$, the columns that form a basis of $\operatorname{Col}(A)$ are the columns of the original matrix (i.e., A itself, as opposed to $\operatorname{rref}(A))$ which correspond to pivot columns, while a basis for $\operatorname{Row}(A)$ is given by the non-zero rows of $\operatorname{rref}(A)-$ and not of the original matrix A.
2. The augmented matrix of the system is

$$
\left[\begin{array}{rrrrrr}
1 & -4 & -3 & -7 & \vdots & 0 \\
2 & -1 & 1 & 7 & \vdots & 0 \\
1 & 2 & 3 & 11 & \vdots & 0
\end{array}\right]
$$

Applying Gauss-Jordan elimination we find

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 5 & \vdots & 0 \\
0 & 1 & 1 & 3 & \vdots & 0 \\
0 & 0 & 0 & 0 & \vdots & 0
\end{array}\right]
$$

Therefore x_{3} and x_{4} are free variables. Denoting by $x_{3}=s, x_{4}=t$, we can then write

$$
\begin{aligned}
& x_{1}=-s-5 t \\
& x_{2}=-s-3 t
\end{aligned}
$$

Therefore solutions $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ can be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-s-5 t \\
-s-3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]=s \vec{u}+t \vec{v}
$$

where

$$
\vec{u}=\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]
$$

The vectors \vec{u} and \vec{v} are a basis for the solution space of the system. In other words, any solution \vec{x} of the system can be written as

$$
\vec{x}=s \vec{u}+t \vec{v}
$$

for some $s, t \in \mathbb{R}$.
3. Dimension of Null space of $A=2$.

